
Efficient Data Selection at Scale via Influence Distillation

Mahdi Nikdan 1 2 3 Vincent Cohen-Addad 2 Dan Alistarh 1 4 Vahab Mirrokni 2

Abstract
Effective data selection is critical for efficient
training of modern Large Language Models
(LLMs). This paper introduces Influence Distil-
lation, a new mathematically-justified framework
for data selection that leverages second-order data
weighting to enhance LLM fine-tuning. By dis-
tilling the influence of training data on a target
distribution, our method assigns optimal, model-
specific weights to training samples, ensuring that
fine-tuning yields strong performance in the tar-
get domain. We derive optimal weights for both
Gradient Descent and Adam optimizers. To re-
duce computational cost, we propose a clustering-
based approach that assigns weights at the clus-
ter level rather than to individual samples. We
validate Influence Distillation by applying it to
instruction tuning on the Tulu V2 dataset, while
targeting various tasks such as GSM8k, SQuAD
and MMLU. Experiments with the Llama2-7B
model demonstrate an average of 0.9% improve-
ment in accuracy on 6 tasks compared to random
selection, while being comparable with computa-
tionally heavier methods such as RDS+.

1. Introduction
The rise of Large Language Models (LLMs) has driven
significant advances in natural language processing; yet,
training and fine-tuning these models requires massive com-
putational resources and carefully-curated datasets. One key
direction towards improved training efficiency has been via
data selection and data weighting methods (Xia et al., 2024;
Yin & Rush, 2024; Antonello et al., 2020; Marion et al.,
2023; Ankner et al., 2024; Li et al., 2023; Ivison et al., 2025;
Axiotis et al., 2024; Xie et al., 2023a; Engstrom et al.; Huang
et al., 2024). However, existing approaches often rely on
heuristics—such as perplexity-based filtering—or require
expensive proxy model training or expensive embedding
functions to generate data representations.

1Institute of Science and Technology Austria (ISTA) 2Google
Research 3Work done while at Google 4Neural Magic. Correspon-
dence to: Mahdi Nikdan <mahdi.nikdan@ista.ac.at>.

More precisely, existing methods face several limitations.
First, they typically use fixed features or representations for
samples (e.g., embeddings) that may not capture the full
relationship between training samples and the target distri-
bution (Yin & Rush, 2024; Antonello et al., 2020; Marion
et al., 2023; Ankner et al., 2024). Second, methods that
update weights during training lack theoretical justification
and can be unstable (Xie et al., 2023a; Huang et al., 2024).
Finally, approaches that rely on reference model training
or costly embeddings are computationally intensive and of-
ten challenging to scale (Li et al., 2023; Xia et al., 2024;
Ivison et al., 2025). Thus, there is still a clear need for a
mathematically-grounded, efficient framework for data se-
lection that directly optimizes for performance on the target
data distribution and task.

Contribution. We present Influence Distillation, a new ap-
proach for data selection that, given a pre-trained model and
target task, formulates the training samples’ influence on a
target distribution by a second-order approximation. Unlike
previous methods, Influence Distillation directly optimizes
sample weights by analyzing how they affect model perfor-
mance through the lens of second-order information. To
make this efficient for large-scale settings, we introduce a
clustering-based approximation that assigns weights at the
cluster level rather than to individual samples.

One key technical insight behind Influence Distillation is
that we can estimate a sample’s influence on the loss by ex-
amining how it affects the loss on the target distribution after
one step of gradient-based optimization. By refining this
relationship, we obtain a quadratic optimization objective
that we show can be solved efficiently.

Specifically, we derive versions of this framework for both
standard gradient descent and adaptive (Adam) optimiz-
ers, with theoretical justification for the resulting weight
derivations. To handle computational constraints with large
datasets, we cluster samples and assign weights per cluster,
rather than per example.

We validate our approach through instruction tuning exper-
iments on standard open LLMs, considering the Tulu V2
(Ivison et al., 2023) training dataset, while targeting ad-
vanced reasoning tasks like MMLU, mathematics and code.
The results demonstrate that Influence Distillation outper-
forms random selection by a large margin and performs

1

Efficient Data Selection at Scale via Influence Distillation

comparable to substantially more expensive methods.

2. Related Work
Data selection (‘pruning’) and weighting methods have be-
come increasingly important in the context of efficient LLM
training. In a celebrated paper, Sorscher et al. (2022) et al.
showed that (model-agnostic) data pruning, and in particular
deduplication, helps go beyond scaling laws for LLMs. This
was later further improved by Abbas et al. (2023).

Early work on model-dependent data pruning focused on
heuristics like perplexity-based filtering and confidence-
based selection: Marion et al. (2023) found that selecting
examples with moderate perplexity scores often outperforms
training on the full dataset or examples selected by other
metrics. Do & Gaspers (2019) introduced DSIR, which
uses importance resampling based on n-gram features to
select relevant training examples, with promising results
on mathematical reasoning and clinical text summarization.
Similarly, Xie et al. (2023b) proposed clustering loss trajec-
tories to identify representative training examples, though
their approach focused more on general domain adapta-
tion rather than specific target distributions. Another ap-
proach, so-called Classifier, was introduced by Brown et al.
(2020) and has been employed in subsequent work (Gao
et al. (2020); Chowdhery et al. (2023); Du et al. (2022).
Other strategies include selecting examples that maximize
the loss difference between LMs trained on candidate and
reference datasets (Moore & Lewis (2010); Axelrod (2017);
Feng et al. (2022)). Simpler, yet common, techniques in-
volve filtering documents based on length or the presence
of excessive special characters (Raffel et al. (2020); Xie
et al. (2023b)). A related, though distinct, task in the LM
domain is optimizing the weights for sampling from mixed
data sources (Chen et al. (2024); Albalak et al. (2023)).

Recent work has also highlighted the importance of consid-
ering the training dynamics when selecting data. Zhou et al.
(2023) proposed measuring “learnability” based on loss
changes during training, while Swayamdipta et al. (2020)
introduced “dataset cartography” to analyze training dy-
namics across examples. These methods provide useful
signals about which examples are most valuable for train-
ing; at the same time, they require training reference mod-
els which can be computationally expensive. For large-
scale applications, Bhatt et al. (2024) evaluated various
data selection approaches for LLM fine-tuning, and found
that facility-location selection based on hidden representa-
tions was particularly effective. However, Tirumala et al.
(2023) observed that generating these representations for
large datasets remains computationally challenging. More
recently, Engstrom et al. (2024) framed the data selection
problem as an optimization problem: Given the learning
algorithm, find the subset of the data that maximizes the

performance of the trained model. To obtain an efficient
solution, they design a model that given a subset of the train-
ing data S and a target example t, predicts the loss of the
model trained on S on t. Axiotis et al. (2024) recently use
coreset-related ideas to propose a computationally efficient
way of sampling an unbiased estimator of the model loss
from the training data so as to train on a smaller input.

While previous methods like DSIR and facility location se-
lection rely on fixed features or representations, our method
directly optimizes sample weights based on their influence
on the target distribution through a second-order approxima-
tion. Importantly, this does not require training proxy model
to predict the value of the elements and is computed di-
rectly from the input, model and learning algorithm. Unlike
curriculum learning or confidence-based approaches that
update weights during training, we derive optimal weights
analytically for both SGD and Adam optimizers. In con-
trast to methods that require training reference models, our
clustering-based approximation allows efficient weight com-
putation without extensive pre-training.

There is a large body of work on data selection methods for
other learning tasks and mode, and it is beyond the scope
of this paper to provide a detailed overview. We refer the
reader to (Kaushal et al., 2019; Killamsetty et al., 2021; Wei
et al., 2015; Chen et al., 2023; Cao et al., 2023; Sener &
Savarese, 2017) and references therein.

3. Method
3.1. Problem and Notation

Let θ ∈ Rd be the model parameters. For any
dataset D of size n and any vector of sample
weights w = [w1, w2, ..., wn]

T , denote L(θ;D,w) =
1
n

∑n
i=1 wi ℓ(θ;Di) as the weighted average of the model

loss ℓ on the samples of dataset D at point θ. Additionally,
define M(θ;D,w) as a training mechanism that returns the
parameters after being trained on a dataset D weighted by
w. Unless otherwise stated, we will assume M is simply
one step of (full) gradient descent.

Let S and T represent the training (source) and downstream
(target) distributions, respectively. Assume we have access
to a dataset S sampled from S and a small representative
dataset T from T . Our high-level goal will be to determine
sample weights w∗ such that:

w∗ = argmin
w

L(M(θ;S,w);T, 1) (1)

where 1 ∈ R|T | represents the all-ones vector. In words,
we wish to find sample weights w for instances within the
source dataset S, such that training on S using these weights
results in minimal loss on the target dataset T . Notably, this
notation also allows for the special case of S=T , where our

2

Efficient Data Selection at Scale via Influence Distillation

method would find weights that maximize in-distribution
loss improvement.

3.2. A Running Example

Throughout this section, we utilize a toy training setting to
illustrate variants of our method. Specifically, we consider
a linear regression model parameterized by θ with the loss
function ℓ(θ;x, y) = (θTx − y)2 for any θ,x ∈ Rd, y ∈
{0, 1}. For the source dataset, we sample 256 random in-
stances from the first two classes of the CIFAR-10 dataset
(Krizhevsky, 2009) and combine them with 256 synthetic
samples generated from a Gaussian distribution with the
same mean and standard deviation as the real samples. The
target dataset consists of another set of 256 samples from
CIFAR-10. We use gradient descent with a learning rate
of 10−3 as the optimizer. Finally, the loss values are re-
ported on a validation dataset of size 256, also sampled
from CIFAR-10.

3.3. Influence Distillation

Case 1: Unconstrained Weights. Let gT (θ) =
∇θL(θ;T, 1) and HT (θ) =∇2

θL(θ;T, 1) denote the gra-
dient vector and Hessian matrix of the loss with respect
to the model parameters on the target dataset. Construct
GS(θ) ∈ R|S|×d by stacking the gradients of the loss
with respect to θ across samples of S. As mentioned
before, assume M is one step of gradient descent, i.e.,
M(θ;D,w) = θ − η∇θL(θ;D,w) = θ − η

|S|G
T
S (θ)w,

where η denotes the learning rate. We estimate Objective 1
by:

w∗ = argmin
w

L(M(θ;S,w);T, 1)

= argmin
w

L(θ − η

|S|
GT

S (θ)w;T, 1)

≈ argmin
w

[L(θ;T, 1)− η

|S|
gT
T (θ)G

T
S (θ)w

+
η2

2 |S|2
wTGS(θ)HT (θ)G

T
S (θ)w]

= argmin
w

[−gT
T (θ)G

T
S (θ)w

+
η

2 |S|
wTGS(θ)HT (θ)G

T
S (θ)w] (2)

where the approximation comes from a second-order Taylor
expansion, i.e., L(θ + δ;T, 1) ≈ L(θ;T, 1) + gT

T (θ)δ +
1
2δ

THT (θ)δ where δ is replaced with − η
|S|G

T
S (θ)w.

Next, we define two key objects, p∈R|S| and Q∈R|S|×|S|,
as follows:

p(θ) = GS(θ)gT (θ), (3)

Q(θ) =
1

|S|
GS(θ)HT (θ)G

T
S (θ), (4)

where, for brevity, we have omitted S and T from the argu-

ments of p and Q. Additionally, let

f(w;θ) =−p(θ)Tw +
η

2
wTQ(θ)w. (5)

Then, the objective in Equation 2 becomes

w∗ = argmin
w

f(w;θ) (6)

In words, f represents a scaled approximation of the change
in loss on T when the model at point θ is trained on S with
weights w. It is a quadratic function in w, as p and Q do
not depend on w. This objective can be minimized in closed
form as w∗ = 1

ηQ(θ)−1p(θ).

Discussion. While simple, the proposed solution has several
crucial limitations: (a) it may produce negative or highly
irregular sample weights, such as excessively large values,
which lack intuitive interpretation, (b) the weights may over-
fit to the current set of parameters θ, and (c) the weights may
also overfit to the target dataset. The first two issues can be
easily observed in our running experiment. The irregularity
of the weights is illustrated in Figure 1 (left). Furthermore,
Figure 1 (right) demonstrates that unconstrained weights be-
come invalidated after just one step of training, suggesting
that the weights “overfit” to the current model parameters θ.
The third issue (c) is illustrated in Appendix B, particularly
for cases where |S|≫ |T |.

Case 2: Robust Weights. We modify Objective 6 to address
the above limitations. First, we restrict the weights to non-
negative values, i.e., ∀ 1 ≤ i ≤ |S|: wi ≥ 0. Second,
we require the weights to sum to the size of the source
dataset, wT 1 = |S|. This prevents weights from becoming
excessively large and ensures that rescaling the weights does
not change the effective step size: using αw with learning
rate η is equivalent to using w with learning rate αη.

To mitigate “overfitting”, a standard approach is to add a
regularization term. Indeed, Appendix A derives such a
term for linear models. In the general case, we employ a
simple L2 regularization term, i.e., λ

2 ∥w∥22.

The Robust Influence Objective. Hence, we define the
robust Influence Distillation objective as below:

w∗ = argmin
w

f(w;θ) +
λ

2
∥w∥22, s.t.

{
w ≥ 0

wT 1 = |S|
(7)

Refer to Section 3.7 for a discussion on how we tune λ in
practice.

We compute the robust weights with λ ∈ {0.01, 0.02, 0.03}
in the context of our running example. Figure 1 (right)
highlights the effectiveness of these robust weights, showing
that all three configurations outperform the default weights
while remaining stable throughout training. Additionally,
Figure 1 (middle) depicts the distribution of weights for
λ= 0.02.

3

Efficient Data Selection at Scale via Influence Distillation

1000 500 0 500 1000
Value

0
25
50
75

100
125
150

Co
un

t

0 1 2 3
Value

0

20

40

60

80

100

Co
un

t

0 10 20 30 40
Iteration

30
45
60
75
90

105
120

Va
lid

at
io

n
Lo

ss

Default
Unconstrained
Robust (= 0.01)
Robust (= 0.02)
Robust (= 0.03)

Figure 1: (Left) Distribution of unconstrained weights, (Middle) Distribution of robust weights for λ= 0.02, and (Right)
validation loss during training with different variants in the running experiment setting. Robust weights are found by
minimizing Objective 7 using the SLSQP algorithm (Kraft, 1988) implemented in the SciPy library (Virtanen et al., 2020).

Adam Optimizer. The Adam optimizer (Kingma, 2014)
is the default choice for fine-tuning LLMs. Therefore, we
tailor our method for Adam optimizers. To this end, we
employ a greedy approach, where we assume the first- and
second-order momentums (m and v, respectively) are fixed
after a warm-up. In this case, the QAdam and pAdam objects
are calculated as follows:

pAdam(θ) = GAdam
S (θ)(gT (θ)− η ∗HT (θ)b), (8)

QAdam(θ) =
1

|S|
GAdam

S (θ)HT (θ)G
Adam
S (θ)T , (9)

where b= β1m

(1−βs
1)(

√
v

1−βs
2
+ϵ)

, and GAdam
S (θ) is constructed

by element-wise multiplying every row of GS(θ) by a =
1−β1

(1−βs
1)(

√
v

1−βs
2
+ϵ)

. Additionally, s is the number of warmup

steps, and (β1, β2, ϵ) are Adam hyperparameters. See Ap-
pendix E for more details.

3.4. Overhead of Calculating Q

Assuming memory constraints limit us to storing a constant
number of gradients, computing Q requires Θ(|S|2) gra-
dient evaluations, which quickly becomes computationally
infeasible as the number of samples increases.

Recalling the definition of f(θ;w) in Equation 5, we note
that the second-order term is scaled by η, the training learn-
ing rate. In practice, η typically ranges from 10−3 to 10−6

when using the Adam optimizer. This observation motivates
us to investigate the regime in which the second-order term
becomes negligible relative to the first-order term, allowing
us to omit the computation of Q altogether.

To this end, we conduct an empirical study using the LLaMA
3.2-1B model (Grattafiori et al., 2024). We select S as a
random subset of 256 samples from the Tulu V2 instruction
tuning dataset (Ivison et al., 2023), and consider two cases
for T : (1) 8 random samples from the GSM8K training set

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

BBH
GSM8k

Figure 2: Cosine similarity of first-order Influence Distilla-
tion weights and that of second-order with different learning
rates.

(Cobbe et al., 2021), (2) 3 random samples from each class
of the BBH dataset (Suzgun et al., 2022). Additional dataset
details are provided in Section 4.1 and Appendix G.

We fix the regularization coefficient to λ= 0.01, and com-
pute the optimal SGD weights for learning rates η ranging
from 10−8 to 100. Figure 2 plots the cosine similarity be-
tween the resulting weights and those obtained with η = 0,
which corresponds to the first-order Influence Distillation.
Notably, the similarity remains high for practical learning
rates and only begins to decay below η = 10−3. Even
at η = 10−2, we observe similarities of over 0.6. These
findings suggest that for typical LLM training regimes, the
first-order approximation of Influence Distillation is suffi-
cient. This aligns with existing gradient-based influence
methods, such as those introduced by Xia et al. (2024).

3.5. Clustered Influence Distillation

In this section, we highlight and address two challenges
associated with the naive Influence Distillation.

1. Scalability with Large Training Sets. In practical

4

Efficient Data Selection at Scale via Influence Distillation

scenarios, the target dataset size, |T |, is typically man-
ageable; however, the size of the training dataset, |S|,
can become significantly large. The naive Influence
Distillation requires calculating gradients individually
for each sample in S at least once, resulting in substan-
tial computational costs even with access to infinite
memory.

2. Importance Division Among Similar Samples. Un-
like previous methods such as Xia et al. (2024), our ob-
jective formulation considers interactions among data
samples. Specifically, if a sample is assigned an influ-
ence score of x, duplicating this sample r times will
distribute its influence equally among the duplicates,
assigning each one an influence score of x

r . Therefore,
a simple top-k selection could fail as important sam-
ples may receive lower scores merely because many
similar samples exist in the dataset.

To address these issues, we make the heuristic assumption
that similar training samples should receive similar influ-
ence scores. Motivated by this assumption, we propose
Clustered Influence Distillation.

Let h(x) : S → Rm denote a function projecting training
samples onto an m-dimensional embedding space. Consider
a clustering of S within this embedding space represented
by (C,n, c), where:

• C ⊆ S, with |C|= k, is the set of cluster centers;
• n ∈ Nk is the vector of cluster sizes;
• c(x) : S → C maps each sample in S to its corre-

sponding cluster center.

Additionally, define N = diag(n) as the diagonal matrix
containing n along its diagonal.

Given this clustering, we impose the following constraint
on the Influence Distillation objective in Equation 7:

∀x, y ∈ S : c(x) = c(y) ⇒ wx = wy,

where wx and wy denote the elements of w corresponding
to samples x and y, respectively. This constraint enforces
identical influence values for samples within the same clus-
ter.

Let w∗ denote the optimal solution to the original robust
objective (Equation 7) under this clustering constraint. We
propose an efficient approximation of w∗ by first solving
for a vector of cluster-level weights w∗

C ∈ R|C| and subse-
quently assigning these cluster-level weights to individual
samples within each cluster, forming the approximation
ŵ∗ ∈ R|S|.

Clustered Objective. Define GC(θ) ∈ Rk×d as the stacked
gradients corresponding to the cluster centers in C. Ad-
ditionally, define clustered versions of the functions p(.),

Q(.), and f(.) from Equations 3, 4, and 5 as follows:

pC(θ) = NGC(θ)gT (θ), (10)

QC(θ) =
1

|S|
NGC(θ)HT (θ)G

T
C(θ)N, (11)

fC(wC ;θ) = −pC(θ)
TwC +

η

2
wT

CQC(θ)wC . (12)

Finally, we compute the cluster-level optimal weights w∗
C

(and consequently ŵ∗) by optimizing the following Clus-
tered Robust Objective:

w∗
C = argmin

wC

fC(wC ;θ)+
λ

2
wT

CNwC , s.t.

{
wC ≥ 0

wT
Cn = |S|

(13)
Justification. First, we justify the validity of this approx-
imation. The regularization term and constraints in the
clustered objectives are equivalent to those in the origi-
nal Objective 7. Moreover, Appendix F demonstrates that
f(ŵ∗;θ) and f(w∗;θ) remain close as long as samples
with similar gradients remain close in the embedding space
h(.). See Section 3.6 for our choice of embedding function.

Complexity. The computational complexity of the Clus-
tered Influence Distillation now depends on |C| rather than
|S|. Since |C| can be directly controlled and is typically
significantly smaller than |S|, this drastically reduces com-
putational overhead.

Clustered Sampling. We now describe our sampling strat-
egy. Suppose we are asked to select k samples. Let
m = n ∗wC denote the importance masses assigned clus-
ters, where n represents the cluster sizes and wC the asso-
ciated weights and ∗ is element-wise multiplication. For a
sampling hyperparameter α, we allocate

ki =
mα

i

∥m∥αα
· k

samples to cluster i, and assign each selected sample a
weight of mi

ki
.

The parameter α governs the tradeoff between sampling
and weighting. Larger values of α emphasize sampling
from more important clusters. Notably, when α = 0, the
method reduces to pure weighting (i.e., uniform sampling
with importance weighting), and when α = 1, it reduces to
importance sampling with uniform weights. By default, we
set α = 0.5 to balance these two extremes.

3.6. Embedding Function

As described in Section 3.5, we perform clustering in an
embedding space that is efficient to compute for all samples
in the dataset and effectively captures gradient similarities.
To this end, we introduce the Jacobian-vector Product (JVP)
Embeddings, detailed below. In Appendix H, we evaluate

5

Efficient Data Selection at Scale via Influence Distillation

the efficiency of JVP and several alternative embeddings, as
well as their ability to capture gradient similarity.

JVP Embeddings. For a sample x ∈ S, we define the JVP
embedding as:

hJV P (x;N , ℓ, V) =
1

|V |
∑
v∈V

∂Nℓ(x)

∂θℓ
· v (14)

where N is the network being trained, Nℓ(·) denotes the
logits of the next predicted token after running the first ℓ
layers (or transformer blocks, in the case of LLMs), θℓ is
the vector of parameters of the first ℓ layers, V is a set of
random vectors with the same shape as θℓ, and ∂Nℓ(x)

∂θℓ
is

the Jacobian matrix of Nℓ(x) with respect to θℓ. In words,
JVP embeddings compute projections of the Jacobian of
an intermediate activation with respect to the parameters
preceding that activation.

In practice, computing the JVP for each vector v ∈ V
costs approximately the same as running the partial forward
pass Nℓ(x), using forward-mode automatic differentiation,
which is supported by many deep learning frameworks.

3.7. Tuning the Regularization Coefficient.

Finally, we describe how the regularization constant λ in
Equation 7 is selected. Appendix I shows that when λ= 0,
the entire weight mass is assigned to a single element, and
that increasing λ gradually decreases the sparsity of the
solution—that is, more samples receive non-zero weight.
Notably, in the limit as λ→∞, the solution becomes fully
dense (i.e., a uniform vector of all ones).

In practice, we tune λ via binary search to achieve a target
sparsity level s, defined as the proportion of samples whose
weights are exactly zero. Unless otherwise specified, we set
the default sparsity level to s= 0.5. This choice reflects a
balance between sample diversity and importance.

4. Experiments
In this section presents evaluate Influence Distillation across
several challenging tasks. We start by detailing the datasets,
the model, and hyperparameters used in our experiments.
Then we present our main results.

4.1. Experimental Setting

We largely follow the challenging setup introduced by Ivison
et al. (2025), where many existing data selection methods
have been shown to fail.

Training Dataset. We use Tulu V2 (Ivison et al., 2023),
a collection of 9 instruction-tuning datasets containing ap-
proximately 5.8 million samples. Detailed descriptions of
each component dataset are provided in Appendix G. In

each experiment, we randomly sample 200k examples from
Tulu V2, and then use sampling methods to pick a subset of
10k samples from this pool.

Target Datasets. We evaluate on six target datasets: MMLU
(Hendrycks et al., 2021b;a), GSM8k (Cobbe et al., 2021),
BBH (Suzgun et al., 2022), TyDIQA (Clark et al., 2020),
Codex (Chen et al., 2021), and SQuAD (Rajpurkar et al.,
2016). For each, we sample between 8 and 500 examples
from their train, dev, or eval splits, following the setup of Ivi-
son et al. (2025). More details are available in Appendix G.

Model. We fine-tune the LLaMA 2–7B model (Touvron
et al., 2023), consistent with the model used in the Tulu V2
paper (Ivison et al., 2023), as well as in the experiments of
Ivison et al. (2025).

Baselines. We consider two baselines: (1) Random selec-
tion, which picks samples uniformly at random, and (2) The
state-of-the-art RDS+ (Ivison et al., 2025) embedding-based
method, where the embeddings are computed by a position-
weighted mean pool of the last hidden layer states. Notably,
RDS+ requires running full forward passes on all the sam-
ples in the pool, which is significantly more expensive that
our JVP embeddings.

Embedding and Clustering. We experiment with two types
of embeddings: (1) Semantic embeddings: we employ the
GTR sentence-transformer (Ni et al., 2021) as a fast seman-
tic embedder. Our results, along with those in Appendix H,
indicate that semantic embeddings are not well-suited for
our purpose. (2) JVP embeddings: as described in Sec-
tion 3.6, we use JVP-based embeddings with ℓ = 4 and
|V |= 1.

For clustering, we apply the K-means algorithm with 8192
clusters using the cosine distance metric. We utilize the
CuML GPU (Raschka et al., 2020) implementation to per-
form K-means clustering 10 times with different random
initializations and select the run with the best objective value.
To ensure that cluster centers correspond to actual samples,
we apply a K-medoids algorithm on the K-means output.

Hyperparameters. We use the AdamW optimizer with
a learning rate of 2 × 10−5 for 3 epochs. The sequence
length is fixed at 2048, and we use a micro batch size of 1
with gradient accumulation over 128 steps. All experiments
are performed on a single H100 GPU. We report each ex-
periment with 3 seeds (including selecting 200k samples
from the full Tulu V2 dataset). The JVP embeddings are
calculated after a warm-up on 10k randomly selected sam-
ples, then the model is restarted to the original weights and
trained on the selected samples.

6

Efficient Data Selection at Scale via Influence Distillation

Method MMLU GSM8k BBH TyDIQA CODEX SQuAD Avg. Sampling FLOPS

Random 45.6 ± 0.43 17.5 ± 1.08 41.8 ± 0.20 51.6 ± 0.38 27.0 ± 0.60 80.8 ± 1.05 44.4 0
RDS+ 46.3 ± 0.33 20.2 ± 2.77 42.7 ± 0.61 50.5 ± 0.84 30.4 ± 0.96 85.3 ± 0.22 45.9 2|S|d ≈ 2800 TF
Ours (GTR) 46.0 ± 0.57 18.4 ± 1.26 42.5 ± 0.27 52.1 ± 0.10 27.5 ± 1.15 82.1 ± 0.96 44.8 2|S|dGTR + 6(|C|+|T |)d ≈ 400 TF
Ours (JVP) 46.7 ± 0.81 18.8 ± 1.61 42.0 ± 0.27 53.8 ± 0.69 27.5 ± 2.09 82.9 ± 0.82 45.3 1

4 |S|d+ 6(|C|+|T |)d ≈ 700 TF

Table 1: Accuracy (± standard deviation) and sampling runtime estimation of methods on various tasks. Notably, d denotes
the size of the model being trained (7B), dGTR refers to the size of the GTR embedding model (110M), and TF stands for
Trillion FLOPS. Additioanlly, S = 200k and T denote the size of training and target datasets, while |C|= 8192 denotes the
number of clusters. In the final approximation, we assume a target dataset size is fixed at 100 for simplicity.

4.2. Main Experiments.

Table 1 demonstrates that Influence Distillation with JVP
embeddings consistently outperforms both Random selec-
tion and Influence Distillation with GTR embeddings, while
achieving accuracy that is, on average, competitive with
RDS+, which requires full forward passes over the entire
training pool. The table also reports the approximate FLOPS
required to perform sampling for each method. We adopt the
estimation from Kaplan et al. (2020), where each forward
pass incurs a cost of 2d FLOPS and each backward pass
incurs 4d FLOPS, with d denoting the number of model pa-
rameters. These estimates indicate that Influence Distillation
with JVP embeddings is approximately 4× more efficient
than RDS+, while maintaining comparable accuracy.

4.3. Effect of α

While the sampling hyperparameter α is set to 0.5 in the
main experiments, we additionally evaluate two extreme
settings of α to explore its effect. For the low-α case, we
set α = 0.1, ensuring that clusters with zero mass receive
no samples. For the high-α case, we use α = 1.0. These
two configurations represent the extremes of the sampling
spectrum: the former emphasizes pure weighting with close
to uniform sampling, while the latter corresponds to pure
sampling based on cluster masses without weighting.

Table 2 demonstrates these that α = 0.5 performs slightly
better than the two extreme cases, striking a balance between
importance sampling and diversity.

5. Conclusion
We introduced Influence Distillation, an efficient gradient-
based data selection method. Influence Distillation opti-
mizes per-sample weights to maximize model performance
on a target distribution, leveraging second-order information.
To improve scalability, we adopt a clustering-based strategy
that assigns importance weights at the cluster level rather
than for individual samples. Our experiments demonstrate
the effectiveness of Influence Distillation in an instruction
tuning setting, where it outperforms random selection with
an average accuracy gain of 0.9%, while remaining competi-

tive with the more computationally intensive RDS+ method.

References
Abbas, A., Tirumala, K., Simig, D., Ganguli, S., and Mor-

cos, A. S. Semdedup: Data-efficient learning at web-
scale through semantic deduplication. arXiv preprint
arXiv:2303.09540, 2023.

Albalak, A., Pan, L., Raffel, C., and Wang, W. Y. Efficient
online data mixing for language model pre-training. In R0-
FoMo: Robustness of Few-shot and Zero-shot Learning
in Large Foundation Models, 2023.

Ankner, Z., Blakeney, C., Sreenivasan, K., Marion, M.,
Leavitt, M. L., and Paul, M. Perplexed by perplexity:
Perplexity-based data pruning with small reference mod-
els. arXiv preprint arXiv:2405.20541, 2024.

Antonello, R., Beckage, N., Turek, J., and Huth, A. Se-
lecting informative contexts improves language model
finetuning. arXiv preprint arXiv:2005.00175, 2020.

Axelrod, A. Cynical selection of language model training
data. arXiv preprint arXiv:1709.02279, 2017.

Axiotis, K., Cohen-Addad, V., Henzinger, M., Jerome, S.,
Mirrokni, V., Saulpic, D., Woodruff, D. P., and Wunder,
M. Data-efficient learning via clustering-based sensitivity
sampling: Foundation models and beyond. In Forty-first
International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum
?id=WUQ4YzIQt2.

Bhatt, G. et al. An experimental design framework for label-
efficient supervised finetuning of large language models.
arXiv preprint arXiv:2401.06692, 2024.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Voss, G.,
and Amodei, D. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Cao, Y., Kang, Y., Wang, C., and Sun, L. Instruction min-
ing: Instruction data selection for tuning large language
models. arXiv preprint arXiv:2307.06290, 2023.

7

https://openreview.net/forum?id=WUQ4YzIQt2
https://openreview.net/forum?id=WUQ4YzIQt2

Efficient Data Selection at Scale via Influence Distillation

Method MMLU GSM8k BBH TyDIQA CODEX SQuAD Avg.

GTR (α = 0.1) 46.1 ± 0.53 17.4 ± 1.27 42.3 ± 0.40 51.3 ± 0.44 29.7 ± 1.10 81.5 ± 0.68 44.7
GTR (α = 0.5) 46.0 ± 0.57 18.4 ± 1.26 42.5 ± 0.27 52.1 ± 0.10 27.5 ± 1.15 82.1 ± 0.96 44.8
GTR (α = 1.0) 46.2 ± 0.32 17.1 ± 0.38 42.5 ± 0.50 51.8 ± 0.07 28.4 ± 0.55 82.1 ± 0.15 44.7

JVP (α = 0.1) 46.4 ± 0.35 18.8 ± 0.37 42.3 ± 0.48 52.8 ± 0.34 28.2 ± 1.15 81.7 ± 1.59 45.0
JVP (α = 0.5) 46.7 ± 0.81 18.8 ± 1.61 42.0 ± 0.27 53.8 ± 0.69 27.5 ± 2.09 82.9 ± 0.82 45.3
JVP (α = 1.0) 46.8 ± 0.29 18.5 ± 0.86 42.7 ± 0.20 53.8 ± 0.49 27.7 ± 0.55 81.9 ± 1.50 45.2

Table 2: Accuracy (± standard deviation) of different values of α on various tasks.

Chen, L., Li, S., Yan, J., Wang, H., Gunaratna, K., Yadav,
V., Tang, Z., Srinivasan, V., Zhou, T., Huang, H., et al.
Alpagasus: Training a better alpaca with fewer data. arXiv
preprint arXiv:2307.08701, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, M., Roberts, N., Bhatia, K., Wang, J., Zhang, C., Sala,
F., and Ré, C. Skill-it! a data-driven skills framework for
understanding and training language models. Advances
in Neural Information Processing Systems, 36, 2024.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Clark, J. H., Choi, E., Collins, M., Garrette, D.,
Kwiatkowski, T., Nikolaev, V., and Palomaki, J. Tydi
qa: A benchmark for information-seeking question an-
swering in typologically diverse languages. Transactions
of the Association for Computational Linguistics, 2020.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Do, Q. and Gaspers, J. Cross-lingual transfer learning with
data selection for large-scale spoken language understand-
ing. EMNLP, 2019.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:
Efficient scaling of language models with mixture-of-
experts. In International Conference on Machine Learn-
ing, pp. 5547–5569. PMLR, 2022.

Engstrom, L., Feldmann, A., and Madry, A. Dsdm: Model-
aware dataset selection with datamodels, 2024. URL
https://arxiv. org/abs/2401.12926.

Engstrom, L., Feldmann, A., and Madry, A. Dsdm: Model-
aware dataset selection with datamodels. In Forty-first
International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum
?id=GC8HkKeH8s.

Feng, Y., Xia, P., Van Durme, B., and Sedoc, J. Auto-
matic document selection for efficient encoder pretrain-
ing. arXiv preprint arXiv:2210.10951, 2022.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Hendrycks, D., Burns, C., Basart, S., Critch, A., Li, J., Song,
D., and Steinhardt, J. Aligning ai with shared human
values. Proceedings of the International Conference on
Learning Representations (ICLR), 2021a.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

Huang, W., Zhang, Y., Guo, S., Shang, Y., and Fu, X. Dyn-
impt: A dynamic data selection method for improving
model training efficiency. IEEE Transactions on Knowl-
edge and Data Engineering, 2024.

Ivison, H., Wang, Y., Pyatkin, V., Lambert, N., Peters, M.,
Dasigi, P., Jang, J., Wadden, D., Smith, N. A., Beltagy,
I., et al. Camels in a changing climate: Enhancing lm
adaptation with tulu 2. arXiv preprint arXiv:2311.10702,
2023.

Ivison, H., Zhang, M., Brahman, F., Koh, P. W., and Dasigi,
P. Large-scale data selection for instruction tuning. arXiv
preprint arXiv:2503.01807, 2025.

8

https://openreview.net/forum?id=GC8HkKeH8s
https://openreview.net/forum?id=GC8HkKeH8s

Efficient Data Selection at Scale via Influence Distillation

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kaushal, V., Iyer, R., Kothawade, S., Mahadev, R., Doctor,
K., and Ramakrishnan, G. Learning from less data: A uni-
fied data subset selection and active learning framework
for computer vision. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1289–1299.
IEEE, 2019.

Killamsetty, K., Zhao, X., Chen, F., and Iyer, R. Retrieve:
Coreset selection for efficient and robust semi-supervised
learning. Advances in neural information processing
systems, 34:14488–14501, 2021.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Kraft, D. A software package for sequential quadratic pro-
gramming. Forschungsbericht- Deutsche Forschungs-
und Versuchsanstalt fur Luft- und Raumfahrt, 1988.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Li, M., Zhang, Y., Li, Z., Chen, J., Chen, L., Cheng, N.,
Wang, J., Zhou, T., and Xiao, J. From quantity to quality:
Boosting llm performance with self-guided data selection
for instruction tuning. arXiv preprint arXiv:2308.12032,
2023.

Marion, M., Üstün, A., Pozzobon, L., Wang, A., Fadaee,
M., and Hooker, S. When less is more: Investigating
data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

Moore, R. C. and Lewis, W. Intelligent selection of language
model training data. In Proceedings of the ACL 2010
conference short papers, pp. 220–224, 2010.

Ni, J., Qu, C., Lu, J., Dai, Z., Ábrego, G. H., Ma, J., Zhao,
V. Y., Luan, Y., Hall, K. B., Chang, M.-W., et al. Large
dual encoders are generalizable retrievers. arXiv preprint
arXiv:2112.07899, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
In Su, J., Duh, K., and Carreras, X. (eds.), Proceed-
ings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin,

Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16- 1264. URL
https://aclanthology.org/D16-1264.

Raschka, S., Patterson, J., and Nolet, C. Machine learning
in python: Main developments and technology trends in
data science, machine learning, and artificial intelligence.
arXiv preprint arXiv:2002.04803, 2020.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and Mor-
cos, A. Beyond neural scaling laws: beating power law
scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., , and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Swayamdipta, S., Schwartz, R., Lourie, N., Wang, Y., Ha-
jishirzi, H., Smith, N. A., and Choi, Y. Dataset cartog-
raphy: Mapping and diagnosing datasets with training
dynamics. EMNLP, 2020.

Tirumala, K., Simig, D., Aghajanyan, A., and Morcos,
A. D4: improving LLM pretraining via document de-
duplication and diversification. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Or-
leans, LA, USA, December 10 - 16, 2023, 2023. URL
http://papers.nips.cc/paper_files/pap
er/2023/hash/a8f8cbd7f7a5fb2c837e578
c75e5b615-Abstract-Datasets_and_Benc
hmarks.html.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Virtanen, P., Gommers, R., Oliphant, T., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al. Fundamental algorithms
for scientific computing in python and scipy 1.0 contribu-
tors. scipy 1.0. Nat. Methods, 17:261–272, 2020.

Wei, K., Iyer, R., and Bilmes, J. Submodularity in data
subset selection and active learning. In International
conference on machine learning, pp. 1954–1963. PMLR,
2015.

9

https://aclanthology.org/D16-1264
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html

Efficient Data Selection at Scale via Influence Distillation

Xia, M., Malladi, S., Gururangan, S., Arora, S., and Chen,
D. Less: Selecting influential data for targeted instruction
tuning. arXiv preprint arXiv:2402.04333, 2024.

Xie, S. M., Santurkar, S., Ma, T., and Liang, P. S. Data
selection for language models via importance resampling.
Advances in Neural Information Processing Systems, 36:
34201–34227, 2023a.

Xie, S. M. et al. Smalltolarge (s2l): Scalable data selection
for fine-tuning large language models by summarizing
training loss trajectories of small models. arXiv preprint,
2023b.

Yin, J. O. and Rush, A. M. Compute-constrained data
selection. arXiv preprint arXiv:2410.16208, 2024.

Zhou, H. et al. Lobass: Gauging learnability in supervised
fine-tuning data. arXiv preprint arXiv:2310.13008, 2023.

10

